# **Environmental Product Declaration**

## Declaration Code: M-EPD-FE-GB-000

**Note:** This EPD is based on the model EPD steel / stainless steel façades. The EPD becomes valid with transmission to the manufacturer by the ift.







ift

**ROSENHEIM** 

Verband Fenster + Fassade

## Windows

Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel





Basis:

DIN EN ISO 14025 EN15804

Company EPD Environmental Product Declaration

Publication date: 26.11.2018

Next revision: 26.11.2023



ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Kontakt Tel.: +49 8031 261-0 Fax: +49 8031 261-290 www.ift-rosenheim.de Prüfung und Kalibrierung – EN ISO/IEC 17025 Inspektion – EN ISO/IEC 17020 Zertifizierung Produkte – EN ISO/IEC 17065 Zertifizierung Managementsysteme – EN ISO/IEC 17021 Notified Body 0757 PÜZ-Stelle: BAY 18



**Environmental Product Declaration** 

## Declaration Code: M-EPD-FE-GB-000

| Programme operator              | ift Rosenheim GmbH<br>Theodor Gietl Straße 7-9<br>D-83026 Rosenheim                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Practitioner of the LCA         | ift Rosenheim GmbH<br>Theodor Gietl Straße 7-9<br>D-83026 Rosenheim                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| Supported by                    | Verband Fenster + Fassad<br>Walter-Kolb-Straße 1-7<br>60594 Frankfurt am Main                                                                                                                                                                                                                                                                                                                                                                     | e                                                                                                                                                                                                    | Note: Declaration holders can be found on page 3.                                                              |  |  |  |  |  |  |  |  |  |  |
| Declaration code                | M-EPD-FE-GB-000                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| Designation of declared product | Windows and lift-and-slide structural steel                                                                                                                                                                                                                                                                                                                                                                                                       | units made of steel, stainless                                                                                                                                                                       | s steel or weather resistant                                                                                   |  |  |  |  |  |  |  |  |  |  |
| Scope                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Steel/stainless steel windows for use in office and administration buildings, public buildings as well as private buildings.                                                                         |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| Basis                           | This EPD was prepared on the basis of EN ISO 14025:2011 and EN 15804:2012+A1:2013. In addition, the "Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen" (Guidance on preparing Type III Environmental Product Declarations) applies. The Declaration is based on the document prEN 17213:2018 "PCR for windows and doors", as well as on the PCR documents ""PCR Part A" PCR-A-0.1:2018 and "Windows" PCR-FE-2.1:2018." |                                                                                                                                                                                                      |                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|                                 | Publication date: 26.11.2018                                                                                                                                                                                                                                                                                                                                                                                                                      | Last revision:<br>18.03.2022                                                                                                                                                                         | Next revision:<br>26.11.2023                                                                                   |  |  |  |  |  |  |  |  |  |  |
| Validity                        | specified products in accor<br>Jansen AG, RP Technik G                                                                                                                                                                                                                                                                                                                                                                                            | ronmental Product Declarat<br>dance with the systems from<br>mbH, Ottostumm SA and is w<br>n in accordance with DIN EN                                                                               | Forster Profilsysteme AG,<br>alid for a period of 5 years                                                      |  |  |  |  |  |  |  |  |  |  |
| LCA basis                       | 14044. The base data inclu<br>generic data derived from<br>glass / TSG / LSG" or "Insu<br>LCA calculations were carr                                                                                                                                                                                                                                                                                                                              | accordance with DIN EN IS<br>ides the data collected at diffe<br>the "GaBi 8" database as we<br>ulating glass units" and "Wind<br>ried out for the specified "crac<br>n chains (e.g. raw material ex | erent manufacturing plants,<br>ell as from the EPDs "Float<br>low hardware".<br>dle to gate with options" life |  |  |  |  |  |  |  |  |  |  |
| Notes                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ance on the Use of ift Test Do<br>umes full liability for the unde                                                                                                                                   | ,                                                                                                              |  |  |  |  |  |  |  |  |  |  |

Mith

Patrich Cestro

Prof. Ulrich Sieberath Director of Institute Patrick Wortner External verifier

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Kontakt Tel.: +49 8031 261-0 Fax: +49 8031 261-290 www.ift-rosenheim.de Prüfung und Kalibrierung – EN ISO/IEC 17025 Inspektion – EN ISO/IEC 17020 Zertifizierung Produkte – EN ISO/IEC 17065 Zertifizierung Managementsysteme – EN ISO/IEC 17021

Notified Body 0757 PÜZ-Stelle: BAY 18



ift

ROSENHEIM

## Product group: Windows

## **Declaration holder**

The currently valid EPDs are published according to the following list on www.ift-service.de/epd:

- M-EPD-FE-GB-001 FERRO-MECCANICA 81 SNC Via Strada di Fort 8 23037 Tirano
- M-EPD-FE-GB-003 SECCO SISTEMI S.p.A. Via Terraglio 195 31022 Pregnaziol

**ift** ROSENHEIM

Page 3

**ift** ROSENHEIM

Page 4

## Product group: Windows

| 1    | General produc  | ct information                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prod | uct definition  | The EPD relates to the product group "Windows" and applies to:                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                 | 1 m² Windows and lift-and-slide units made of steel, stainless steel or<br>weather resistant structural steel<br>with transparent and/or opaque infill panels                                                                                                                                                                                                                                                                                   |
|      |                 | The average unit is declared as follows:<br>Directly used material flows are determined using the average sizes (window: 1.23 m x 1.48 m, lift-and-slide units: $3.00 \text{ m x } 2.10 \text{ m}$ ) and assigned to the declared unit.<br>All other inputs and outputs in the production were scaled to the declared unit in their entirety since no direct assignment to the average size is possible. The reference period is the year 2017. |
| Prod | uct description | <b>Profile system</b><br>Steel profile with and without thermal break, rebate insulators; total installation depth 50 – 120 mm and/or for door height sliding/folding units (e.g. lift-and-slide units) up to 220 mm (frame member depth plus casement overlap).                                                                                                                                                                                |
|      |                 | System supplier/licensor<br>Forster Profilsysteme AG, Jansen AG, RP Technik GmbH, Ottostumm SA.                                                                                                                                                                                                                                                                                                                                                 |
|      |                 | <b>Type and direction of opening</b><br>All types of opening incl. fixed lights.                                                                                                                                                                                                                                                                                                                                                                |
|      |                 | <b>Frame material</b><br>Steel/stainless steel with and without thermal break made of polyamide,<br>polypropylene, ABS, GRP or stainless steel.                                                                                                                                                                                                                                                                                                 |
|      |                 | Overall dimensions of frame member<br>Independent of dimensions.                                                                                                                                                                                                                                                                                                                                                                                |
|      |                 | Rebate design – rebate gasket<br>Internal / centre and external: gasket made of EPDM, CR, TPE, TPV or silicone.                                                                                                                                                                                                                                                                                                                                 |
|      |                 | <b>Finish</b><br>Powder coated, wet paint, mechanical surface treatment.<br>Options: covers in structural bronze.                                                                                                                                                                                                                                                                                                                               |
|      |                 | <b>Infill panel</b><br>Single glass or insulating glass units (double or triple) in accordance with the EPD<br>"Insulating glass units". TSG/LSG in accordance with the EPD "Float<br>glass/TSG/LSG or opaque infill panel".                                                                                                                                                                                                                    |
|      |                 | <b>Mounting of infill panels – glazing gaskets</b><br>Internal: gunnable sealing material made of silicone or EPDM/TPE/TPV.<br>External: sealing material made of silicone or EPDM/TPE/TPV.                                                                                                                                                                                                                                                     |

Hardware – type Hardware in accordance with the EPD "Window hardware".

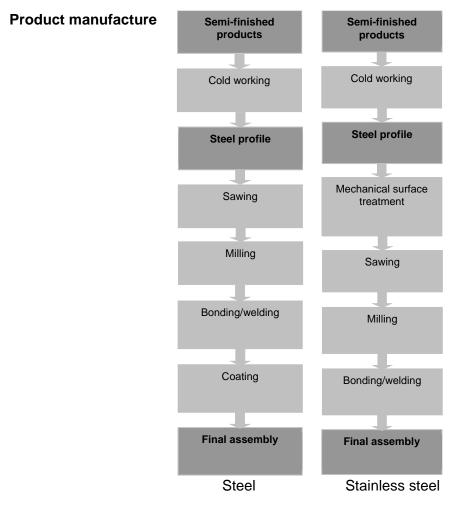
Product group: Windows



Page 5

#### This EPD does not apply to:

- Roof windows because their design differs too much from the declared windows.
- Bonded glass systems
- Windows in structural bronze


Supplementary components such as external/internal shutters e.g. roller shutters, solar shading devices, roller shutter boxes, etc. shall be considered separately.

#### Additional information for architects

- Frame face width: approx. 40 mm to 160 mm and up to 220 mm for lift-andslide doors
- Seals/gaskets: central seal and, if required, internal overlap gasket, additional external gasket possible.

Observe also the relevant manufacturer system descriptions.

For a detailed product description refer to the manufacturer specifications or the product specifications of the respective offer/quotation.



Applications

Steel/stainless steel windows for use in office and administration buildings, public buildings as well as private buildings.

Additional information

For detailed performance characteristics relating to building physics refer to the CE marking and the documents accompanying the product.

#### Product group: Windows

#### 2 Materials used

| Primary materials        | The primary materials used are listed in the LCA (see Section 7).    |
|--------------------------|----------------------------------------------------------------------|
| Declarable<br>substances | REACH conformity is queried when transferred to the manufactrer.     |
| Substances               | All relevant safety data sheets are available from the maunfacturer. |

## 3 Construction process stage

**Processing recommendations, installation Observe** the processing instructions as well as the instructions for assembly/installation, operation, service/maintenance and disassembly in accordance with the WP series of the VFF guidance sheets as well as the installation guidance.

### 4 Use stage

environment

**Emissions to the** No emissions to indoor air, water or soil are known. There may be VOC emissions.

**Reference service life** (**RSL**) The RSL information was provided by the manufacturer. The RSL shall refer to the declared technical and functional performance of the product within the building. It shall be established in accordance with specific rules set out in the European product standards and shall also take into account ISO 15686-1, -2, -7 and -8. Where European product standards provide guidance on determining RSL, such guidance shall have priority. If it is not possible to determine the service life as the RSL in accordance with ISO 15686, the BBSR table "Nutzungsdauer von Bauteilen zur Lebenszyklusanalyse nach BNB" (service life of building components for life cycle assessment in accordance with the sustainable construction evaluation system) can be used. For further information and explanations refer to <u>www.nachhal-tigesbauen.de</u>.

For this EPD the following applies:

According to the BBSR table, an optional service life of 50 years is specified for Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel.

The average was calculated from the data recorded and is therefore representative. The material and energy flows for 2017 were divided by the numbers of units manufactured to produce average figures for use in the LCA calculations. The service life is dependent on the characteristics of the product and in-use conditions. The characteristics described in the EPD are applicable, in particular the characteristics listed below:

- Outdoor environment: climatic influences may have a negative impact on the service life.
- Indoor environment: no impacts known that have a negative effect on the service life

The service life solely applies to the characteristics specified in this EPD or the corresponding references.

The reference service life (RSL) does not reflect the actual life span, which is usually determined by the service life and the refurbishment of a building. It does not





Product group: Windows

give any information on the useful life, warranty referring to performance characteristics or guarantees.

## 5 End-of-life stage

**Possible end-of-life stages** The Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel are shipped to central collection points. There the products are usually shredded and sorted into their original constituents. The end-of-life stage depends on the site where the products are used and is therefore subject to the local regulations. The locally applicable regulatory requirements should be considered.

> This EPD shows the end-of-life modules according to the market situation. For building assessment 100% versions of the disposal process are used. The percentages by mass of the material groups are specified in Section 6.2.

**Disposal routes** The LCA includes the average disposal routes.

All life cycle scenarios are detailed in the Annex.

## 6 Life Cycle Assessment (LCA)

Environmental product declarations are based on life cycle assessments (LCAs) which use material and energy flows for the calculation and subsequent representation of environmental impacts.

Such a life cycle assessment was developed as the basis for Windows and liftand-slide units made of steel, stainless steel or weather resistant structural steel. The LCA is in conformity with EN 15804 and the international standards DIN EN ISO 14040, DIN EN ISO 14044, ISO 21930 and EN ISO 14025.

The LCA is representative of the products presented in the Declaration and the specified reference period.

#### 6.1 Definition of goal and scope

Goal

The goal of the LCA is to demonstrate the environmental impacts of Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel. In accordance with EN 15804, the environmental impacts covered by this Environmental Product Declaration are presented for the entire product life cycle in the form of basic information. No other additional environmental impacts are specified.

Data quality, data availability and geographical and time-related system boundaries The specific data originate exclusively from the research project "EPDs für transparente Bauelemente" (EPDs for transparent building components) and from surveys of various manufacturers or system suppliers. For the research project the data were collected on-site and originate in parts from company records and partly from values directly obtained by measurement. Furthermore, for the first issue, a series of measurements was carried out in various manufacturing plants and compared with the 2017 fiscal year data. Validity of the data was checked by the ift.

The generic data originate from the "GaBi 8" software "Professional Datenbank und Baustoff Datenbank" (professional data base and building materials data



ROSENHEIM

Page 8



#### Product group: Windows

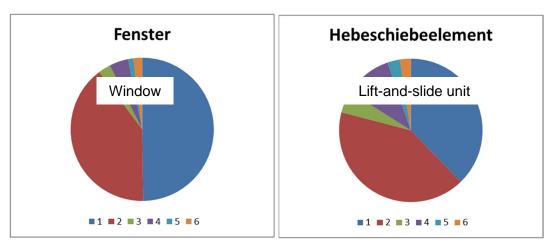
| i de la companya de l |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 | base). The last update of both databases was in 2018. Data from before this date originate also from these databases and are not more than 4 years old. No other generic data were used for the calculation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                 | Data gaps were either filled with comparable data or conservative assumptions, or the data were cut off in compliance with the 1% rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                 | The life cycle was modelled using the sustainability software tool "GaBi 8" for the development of Life Cycle Assessments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Scope / system<br>boundaries                                                                                    | The system boundaries refer to the supply of raw materials and purchased parts, manufacture/production, use and end-of-life stage of Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel (cradle to gate – with options).<br>No additional data from pre-suppliers/subcontractors or other sites were taken into consideration.                                                                                                                                                                                                                                                                                                                                                                                  |
| Cut-off criteria                                                                                                | All company data collected, i.e. all commodities/input and raw materials used, the thermal energy and electricity consumption, were taken into consideration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                 | The boundaries cover only the product-relevant data. Building sections/parts of facilities that are not relevant to the manufacture of the products, were excluded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 | <ul> <li>The transport distances of the pre-products used were taken into consideration as a function of 100% of the mass of the Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel. The transport mix is composed as follows and originates from the research project "EPDs für transparente Bauelemente" (EPDs for transparent building components).</li> <li>Truck, 26 – 28 t total weight / 18.4 t payload, Euro 6, freight, 85% capacity used, 100 km;</li> <li>Truck-trailer, 28 – 34 t total weight / 22t payload, Euro 6, 50% capacity used, 50 km;</li> <li>Freight train, electrical and diesel driven; D 60%, E 51% capacity used, 50 km</li> <li>Seagoing vessel, consumption mix, 50 km</li> </ul> |
|                                                                                                                 | The criteria for the exclusion of inputs and outputs as set out in EN 15804 are fulfilled. It can be assumed that the total of negligible processes per life cycle stage does not exceed 1 percent of the mass/primary energy. This way the total of negligible processes does not exceed 5 percent of the energy and mass input. The life cycle calculation also includes material and energy flows that account for less than 1 percent.                                                                                                                                                                                                                                                                                                                         |
| 6.2 Inventory analy                                                                                             | rsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

- Goal All material and energy flows are described below. The processes covered are presented as input and output parameters and refer to the declared/functional units.
- Life cycle stages The Annex shows the entire life cycle of Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel. Product stage "A1 A3", construction process stage "A4 A5", use stage "B2– B3 and B6 B7", end-of-life

## Product group: Windows

Page 9




|                                                    | stage "C1 – C4" and the benefits and loads beyond the system boundaries "D" were taken into consideration.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Benefits                                           | <ul> <li>The below benefits have been defined as per EN 15804:</li> <li>Benefits from recycling</li> <li>Benefits (thermal and electrical) from incineration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                            |
| Allocation of co-<br>products                      | The manufacture of Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel does not produce any allocations.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Allocations for re-<br>use, recycling and recovery | If the Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel are reused/recycled and recovered during the product stage (rejects), the components are shredded and then sorted into single constituents, if required. This is done by various process plants, e.g. magnetic separators. The system boundaries of the Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel were set following their disposal, when the end of their waste status had been reached. |
| Allocations beyond<br>life cycle boundaries        | Use of recycled materials in the manufacturing process was based on the current market-specific situation. In parallel to this, a recycling potential was taken into consideration that reflects the economic value of the product after recycling (recyclate). The system boundary set for the recycled material refers to collection.                                                                                                                                                                                                                            |
| Secondary material                                 | The use of secondary material in Module A3 was considered. Secondary material is not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Inputs                                             | The LCA includes the following production-relevant inputs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    | <b>Energy</b><br>The electricity mix is based on "Strommix Europa" (Europe electricity mix).                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                    | A portion of the process heat is used for space heating. Quantification is not possible, however.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    | <b>Water</b><br>The water consumed by the individual process steps for the production of Windows<br>and lift-and-slide units made of steel, stainless steel or weather resistant structural<br>steel amounts to a total of 0.379 l per m <sup>2</sup> of unit.<br>The consumption of fresh water specified in Section 6.3 originates (among others)<br>from the process chain of the pre-products.                                                                                                                                                                 |

**Raw material / pre-products** The chart below shows the share of raw materials/pre-products in %.

Page 10



#### Product group: Windows



| No. | Material                                          | Mass in % |      |  |  |  |  |  |  |
|-----|---------------------------------------------------|-----------|------|--|--|--|--|--|--|
| 1   | Steel / stainless steel / weather resistant steel | 49.8      | 37.8 |  |  |  |  |  |  |
| 2   | Glass                                             | 40.0      | 41.3 |  |  |  |  |  |  |
| 3   | Hardware                                          | 2.8       | 4.9  |  |  |  |  |  |  |
| 4   | Insulation                                        | 4.3       | 10.7 |  |  |  |  |  |  |
| 5   | Aluminium                                         | 1.2       | 2.8  |  |  |  |  |  |  |
| 6   | Other                                             | 2.0       | 2.5  |  |  |  |  |  |  |

#### Ancillary materials and consumables

0.454 kg of ancillary materials and consumables are required for 1 m<sup>2</sup> ofWindows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel.

#### **Product packaging**

0.65 kg of product packaging (PE films) are used.

**Outputs** The LCA includes the production-relevant outputs per 1 m<sup>2</sup> of Windows and liftand-slide units made of steel, stainless steel or weather resistant structural steel:

#### Waste

Secondary raw materials were included in the benefits. See Section 6.3 Impact assessment.

#### Waste water

0.379 I waste water is produced for the manufacture of 1  $m^2$  of Windows and liftand-slide units made of steel, stainless steel or weather resistant structural steel.

#### 6.3 Impact assessment

- **Goal** The impact assessment covers both inputs and outputs. The impact categories applied are named below:
- **Impact categories** The models for impact assessment were applied as described in EN 15804-A1.

Product group: Windows



Page 11

The impact categories presented in the EPD are as follows:

- Depletion of abiotic resources (fossil fuels);
- Depletion of abiotic resources (elements);
- Acidification of soil and water;
- Ozone depletion;
- Global warming;
- Eutrophication;
- Photochemical ozone creation.

Waste The waste generated during the production of 1 m<sup>2</sup> of Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel is evaluated and shown separately for the fractions trade wastes, special wastes and radioactive wastes. Since waste handling is modelled within the system boundaries, the amounts shown refer to the deposited wastes. A portion of the waste indicated is generated during the manufacture of the pre-products.

## Declaration code: M-EPD-FE-GB-000

## Publication date: 26.11.2018

| I aye iz | Page | 12 |
|----------|------|----|
|----------|------|----|



| Ros<br>Results per 1 m <sup>2</sup> of Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel (windows) |                                      |               |               |                          |              |              |           |      |          |           |          |          |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|---------------|--------------------------|--------------|--------------|-----------|------|----------|-----------|----------|----------|---------|
| Results per 1 m <sup>2</sup> of Windows and lift-and-slide                                                                                             | units made of sto                    | eel, stainles | ss steel or v | weather rea              | sistant stru | ctural steel | (windows) |      |          |           |          |          |         |
| Environmental impacts                                                                                                                                  | Unit                                 | A1-A3         | A4            | A5                       | B2           | B3           | B6        | B7   | C1       | C2        | C3       | C4       | D       |
| Global warming potential                                                                                                                               | kg CO <sub>2</sub> eq.               | 152.46        | 7.75          | 0.82                     | 193.18       | 38.42        | 0.00      | 0.00 | 5.76E-02 | 1.07      | 8.63     | 1.61     | -44.42  |
| Depletion potential of stratospheric ozone layer                                                                                                       | kg R11 eq.                           | 1.01E-06      | 2.12E-13      | 2.76E-14                 | 1.75E-11     | 1.01E-06     | 0.00      | 0.00 | 2.56E-13 | 2.93E-14  | 1.64E-13 | 9.11E-14 | -2.13E- |
| Acidification potential of soil and water                                                                                                              | kg SO <sub>2</sub> eq.               | 0.66          | 1.86E-02      | 3.32E-04                 | 0.23         | 0.35         | 0.00      | 0.00 | 1.64E-04 | 2.23E-03  | 1.03E-02 | 2.14E-03 | -0.12   |
| Eutrophication potential                                                                                                                               | kg PO <sub>4</sub> <sup>3-</sup> eq. | 5.63E-02      | 4.67E-03      | 6.13E-05                 | 3.29E-02     | 2.72E-02     | 0.00      | 0.00 | 1.53E-05 | 5.58E-04  | 2.70E-03 | 1.57E-03 | -1.12E- |
| Formation potential of tropospheric ozone                                                                                                              | kg C₂H₄ eq.                          | 4.99E-02      | -6.23E-03     | 1,95E-05                 | 5.33E-02     | 1.98E-02     | 0.00      | 0.00 | 1.02E-05 | -6.95E-04 | 6.10E-04 | 4.64E-04 | -8.68E- |
| Depletion of abiotic resources (ADP elements)                                                                                                          | kg Sb eq.                            | 3.83E-03      | 6.38E-07      | 3.74E-08                 | 3.93E-05     | 3.53E-03     | 0.00      | 0.00 | 3.06E-08 | 8.81E-08  | 9.05E-08 | 1.34E-07 | -1.92E- |
| Depletion of abiotic resources (ADP fossil fuels)                                                                                                      | MJ                                   | 2060.75       | 105.79        | 0.33                     | 5695.42      | 663.08       | 0.00      | 0.00 | 0.61     | 14.60     | 4.40     | 5.14     | -445.1  |
| Use of resources                                                                                                                                       | Unit                                 | A1-A3         | A4            | A5                       | B2           | B3           | B6        | B7   | C1       | C2        | C3       | C4       |         |
| Renewable primary energy as energy source                                                                                                              | MJ                                   | 310.22        | 5.86          | 5.72E-02                 | 67.94        | 51.57        | 0.00      | 0.00 | 0.40     | 0.81      | 0.35     | 0.59     | -55.4   |
| Renewable primary energy for material use                                                                                                              | MJ                                   | 0.00          | 0.00          | 0.00                     | 0.00         | 0.00         | 0.00      | 0.00 | 0.00     | 0.00      | 0.00     | 0.00     | 0.00    |
| Total use of renewable primary energy                                                                                                                  | MJ                                   | 310.22        | 5.86          | .86 5.72E-02 67.94 51.57 |              | 0.00         | 0.00      | 0.40 | 0.81     | 0.35      | 0.59     | -55.4    |         |
| Non-renewable primary energy as energy source                                                                                                          | MJ                                   | 2232.10       | 106.16        | 13.72                    | 5737.36      | 729.52       | 0.00      | 0.00 | 1.05     | 14.65     | 86.16    | 9.62     | -482.7  |
| Non-renewable primary energy for material use                                                                                                          | MJ                                   | 103.65        | 0.00          | -13.33                   | 0.00         | 0.00         | 0.00      | 0.00 | 0.00     | 0.00      | -81.45   | -4.29    | 0.00    |
| Total use of non-renewable primary energy                                                                                                              | MJ                                   | 2335.75       | 106.16        | 0.38                     | 5737.36      | 729.52       | 0.00      | 0.00 | 1.05     | 14.65     | 4.71     | 5.33     | -482.7  |
| Use of secondary materials                                                                                                                             | kg                                   | 0.95          | 0.00          | 0.00                     | 0.00         | 0.95         | 0.00      | 0.00 | 0.00     | 0.00      | 0.00     | 0.00     | 0.00    |
| Renewable secondary fuels                                                                                                                              | MJ                                   | 4.47E-09      | 5.73E-28      | 2.95E-23                 | 5.40E-21     | 1.71E-12     | 0.00      | 0.00 | 0.00E+00 | 7.91E-29  | 1.90E-23 | 6.83E-23 | -2.82E  |
| Non-renewable secondary fuels                                                                                                                          | MJ                                   | 5.26E-08      | 8.70E-27      | 3.47E-22                 | 6.35E-20     | 2.01E-11     | 0.00      | 0.00 | 1.56E-30 | 1.20E-27  | 2,23E-22 | 8.02E-22 | -3.31E- |
| Use of fresh water resources                                                                                                                           | m <sup>3</sup>                       | 0.62          | 1.08E-02      | 2.42E-03                 | 1.14         | 0.15         | 0.00      | 0.00 | 5.39E-04 | 1.49E-03  | 2.13E-02 | 9.25E-04 | -7.38E- |
| Waste categories and output material flows                                                                                                             | Unit                                 | A1-A3         | A4            | A5                       | B2           | B3           | B6        | B7   | C1       | C2        | C3       | C4       | D       |
| Disposed hazardous waste                                                                                                                               | kg                                   | 3.43E-03      | 6.14E-06      | 1.76E-09                 | 1.59E-06     | 3.42E-03     | 0.00      | 0.00 | 4.94E-10 | 8.47E-07  | 2.15E-09 | 7.56E-08 | -3.20E- |
| Disposed non-hazardous waste                                                                                                                           | kg                                   | 29.37         | 8.89E-03      | 0.11                     | 0.81         | 24.62        | 0.00      | 0.00 | 7.42E-04 | 1.23E-03  | 1.03E-02 | 20.13    | -1.73   |
| Radioactive waste                                                                                                                                      | kg                                   | 0.11          | 1.45E-04      | 1.98E-05                 | 1.66E-02     | 2.42E-02     | 0.00      | 0.00 | 1.74E-04 | 2.01E-05  | 1.21E-04 | 7.66E-05 | -1.50E- |
| Components for further use                                                                                                                             | kg                                   | 0.00          | 0.00          | 0.00                     | 0.00         | 0.00         | 0.00      | 0.00 | 0.00     | 0.00      | 0.00     | 0.00     | 0.00    |
| Materials for recycling                                                                                                                                | kg                                   | 0.00          | 0.00          | 0.00                     | 0.00         | 0.00         | 0.00      | 0.00 | 0.00     | 0.00      | 29.71    | 0.00     | 0.00    |
| Materials for energy recovery                                                                                                                          | kg                                   | 0.00          | 0.00          | 0.00                     | 0.00         | 0.00         | 0.00      | 0.00 | 0.00     | 0.00      | 3.77     | 0.00     | 0.00    |
| Exported electrical energy                                                                                                                             | MJ                                   | 1.04          | 0.00          | 0.91                     | 0.00         | 0.00         | 0.00      | 0.00 | 0.00     | 0.00      | 0.00     | 18.17    | 0.00    |
| Exported thermal energy                                                                                                                                | MJ                                   | 1.85          | 0.00          | 1.71                     | 0.00         | 0.00         | 0.00      | 0.00 | 0.00     | 0.00      | 0.00     | 31.62    | 0.00    |

## Declaration code: M-EPD-FE-GB-000

## Publication date: 26.11.2018



|                                                              |                                      |              |              |             |             |              |               |            |          |           |          |          | ROSENHE |
|--------------------------------------------------------------|--------------------------------------|--------------|--------------|-------------|-------------|--------------|---------------|------------|----------|-----------|----------|----------|---------|
| Results per 1 m <sup>2</sup> of Windows and lift-and-slide u | inits made of ste                    | el, stainles | s steel or v | veather res | istant stru | ctural steel | (lift-and-sli | ide doors) |          |           |          |          |         |
| Environmental impacts                                        | Unit                                 | A1-A3        | A4           | A5          | B2          | B3           | B6            | B7         | C1       | C2        | C3       | C4       | D       |
| Global warming potential                                     | kg CO <sub>2</sub> eq.               | 171.89       | 8.36         | 0.83        | 193.18      | 46.20        | 0.00          | 0.00       | 5.76E-02 | 1.16      | 16.66    | 1.71     | -48.8   |
| Depletion potential of stratospheric ozone layer             | kg R11 eq.                           | 1.91E-06     | 2.29E-13     | 2.79E-14    | 1.75E-11    | 1.90E-06     | 0.00          | 0.00       | 2.56E-13 | 3.18E-14  | 3.18E-13 | 9.94E-14 | -3.48E  |
| Acidification potential of soil and water                    | kg SO <sub>2</sub> eq.               | 0.75         | 2.00E-02     | 3.36E-04    | 0.23        | 0.38         | 0.00          | 0.00       | 1.64E-04 | 2.43E-03  | 1.99E-02 | 2.34E-03 | -0.1    |
| Eutrophication potential                                     | kg PO <sub>4</sub> <sup>3-</sup> eq. | 6.32E-02     | 5.03E-03     | 6.21E-05    | 3.29E-02    | 2.92E-02     | 0.00          | 0.00       | 1.53E-05 | 6.07E-04  | 5.21E-03 | 1.67E-03 | -1.25E  |
| Formation potential of tropospheric ozone                    | kg C <sub>2</sub> H <sub>4</sub> eq. | 5.50E-02     | -6.71E-03    | 1.97E-05    | 5.33E-02    | 2.19E-02     | 0.00          | 0.00       | 1.02E-05 | -7.57E-04 | 1.18E-03 | 4.96E-04 | -8.90E  |
| Depletion of abiotic resources (ADP elements)                | kg Sb eq.                            | 6.40E-03     | 6.88E-07     | 3.79E-08    | 3.93E-05    | 5.87E-03     | 0.00          | 0.00       | 3.06E-08 | 9.57E-08  | 1.74E-07 | 1.47E-07 | -1.69E  |
| Depletion of abiotic resources (ADP fossil fuels)            | MJ                                   | 2394.22      | 113.98       | 0.33        | 5695.42     | 763.03       | 0.00          | 0.00       | 0.61     | 15.86     | 8.00     | 5.61     | -513.   |
| Use of resources                                             | Unit                                 | A1-A3        | A4           | A5          | B2          | B3           | B6            | B7         | C1       | C2        | C3       | C4       | D       |
| Renewable primary energy as energy source                    | MJ                                   | 388.07       | 6.31         | 5.79E-02    | 67.94       | 69.62        | 0.00          | 0.00       | 0.40     | 0.88      | 0.68     | 0.65     | -91.4   |
| Renewable primary energy for material use                    | MJ                                   | 0.00         | 0.00         | 0.00        | 0.00        | 0.00         | 0.00          | 0.00       | 0.00     | 0.00      | 0.00     | 0.00     | 0.0     |
| Total use of renewable primary energy                        | MJ                                   | 388.07       | 6.31         | 5.79E-02    | 67.94       | 69.62        | 0.00          | 0.00       | 0.40     | 0.88      | 0.68     | 0.65     | -91.4   |
| Non-renewable primary energy as energy source                | MJ                                   | 2668.92      | 114.38       | 13.86       | 5737.36     | 862.81       | 0.00          | 0.00       | 1.05     | 15.92     | 53.38    | 8.18     | -574.   |
| Non-renewable primary energy for material use                | MJ                                   | 60.63        | 0.00         | -13.48      | 0.00        | 0.00         | 0.00          | 0.00       | 0.00     | 0.00      | -44.79   | -2.36    | 0.0     |
| Total use of non-renewable primary energy                    | MJ                                   | 2729.55      | 114.38       | 0.38        | 5737.36     | 862.81       | 0.00          | 0.00       | 1.05     | 15.92     | 8.59     | 5.82     | -574.   |
| Use of secondary materials                                   | kg                                   | 1.06         | 0.00         | 0.00        | 0.00        | 0.95         | 0.00          | 0.00       | 0.00     | 0.00      | 0.00     | 0.00     | 0.00    |
| Renewable secondary fuels                                    | MJ                                   | 1.09E-07     | 6.18E-28     | 2.99E-23    | 5.40E-21    | 1.71E-12     | 0.00          | 0.00       | 0.00E+00 | 8.60E-29  | 3.67E-23 | 7.50E-23 | -7.24E  |
| Non-renewable secondary fuels                                | MJ                                   | 1.38E-06     | 9.37E-27     | 3.51E-22    | 6.35E-20    | 2.01E-11     | 0.00          | 0.00       | 1.56E-30 | 1.30E-27  | 4.31E-22 | 8.81E-22 | -8.51E  |
| Use of fresh water resources                                 | m <sup>3</sup>                       | 0.76         | 1.16E-02     | 2.45E-03    | 1.14        | 0.17         | 0.00          | 0.00       | 5.39E-04 | 1.62E-03  | 4.12E-02 | 1.01E-03 | -0.1    |
| Waste categories and output material flows                   | Unit                                 | A1-A3        | A4           | A5          | B2          | B3           | B6            | B7         | C1       | C2        | C3       | C4       | D       |
| Disposed hazardous waste                                     | kg                                   | 3.82E-03     | 6.61E-06     | 1.78E-09    | 1.59E-06    | 3.42E-03     | 0.00          | 0.00       | 4.94E-10 | 9.20E-07  | 3.98E-09 | 8.31E-08 | -3.71E  |
| Disposed non-hazardous waste                                 | kg                                   | 34.69        | 9.58E-03     | 0.11        | 0.81        | 24.62        | 0.00          | 0.00       | 7.42E-04 | 1,33E-03  | 1.98E-02 | 22.15    | -3.0    |
| Radioactive waste                                            | kg                                   | 0.13         | 1.57E-04     | 2.00E-05    | 1.66E-02    | 3.56E-02     | 0.00          | 0.00       | 1.74E-04 | 2.18E-05  | 2.34E-04 | 8.36E-05 | -2.41E  |
| Components for further use                                   | kg                                   | 0.00         | 0.00         | 0.00        | 0.00        | 0.00         | 0.00          | 0.00       | 0.00     | 0.00      | 0.00     | 0.00     | 0.00    |
| Materials for recycling                                      | kg                                   | 0.00         | 0.00         | 0.00        | 0.00        | 0.00         | 0.00          | 0.00       | 0.00     | 0.00      | 28.32    | 0.00     | 0.00    |
| Materials for energy recovery                                | kg                                   | 0.00         | 0.00         | 0.00        | 0.00        | 0.00         | 0.00          | 0.00       | 0.00     | 0.00      | 7.29     | 0.00     | 0.0     |
| Exported electrical energy                                   | MJ                                   | 1.09         | 0.00         | 0.92        | 0.00        | 0.00         | 0.00          | 0.00       | 0.00     | 0.00      | 0.00     | 34.73    | 0.0     |
| Exported thermal energy                                      | MJ                                   | 1.96         | 0.00         | 1.73        | 0.00        | 0.00         | 0.00          | 0.00       | 0.00     | 0.00      | 0.00     | 61.17    | 0.0     |

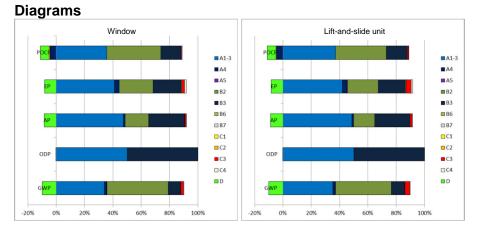
Page 14



#### Product group: Windows

#### 6.4 Interpretation, LCA presentation and critical review

#### **Evaluation**


The environmental impacts of windows originate mainly from the use of steel and insulating glass units and/or their upstream chains. The use-stage values originate mainly from the use of cleaning agents and replacement of components during a period of 50 years.

For scenario C4 only marginal consumptions arising from the physical pretreatment and management of the disposal site are expected. Allocation to individual products is almost impossible for site disposal.

As regards the recycling of Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel, for metals almost two thirds of the environmental impacts during manufacture can be assigned as benefits to scenario D.

The chart below show the allocation of the main environmental impacts.

## The values obtained from the LCA calculations are suitable for building certification if required.



Report

The LCA underlying this EPD was developed according to the requirements of DIN EN ISO 14040 and DIN EN ISO 14044 as well as EN 15804 and EN ISO 14025. It is not addressed to third parties for reasons of confidentiality. It is deposited with the ift Rosenheim. The results and conclusions reported to the target group are complete, correct, without bias and transparent. The results of the study are not designed to be used for comparative statements intended for publication.

**Critical review** The critical review of the LCA and of the report took place in the course of verification of the EPD and was carried out by Patrick Wortner, an external verifier.

## 7 General information regarding the EPD

Comparability

This EPD was prepared in accordance with EN 15804 and is therefore only comparable to those EPDs that also comply with the requirements set out in EN 15804.

Page 15



#### Product group: Windows

Any comparison must refer to the building context and the same boundary conditions of the various life cycle stages. For comparing EPDs of construction products, the rules set out in EN 15804 (Clause 5.3) apply. Communication The communications format of this EPD meets the requirements of EN 15942:2011 and is therefore the basis for B2B communication. Only the nomenclature has been changed according to EN 15804. Verification Verification of the Environmental Product Declaration is documented in accordance with the ift "Richtlinie zur Erstellung von Typ III Umweltproduktdeklarationen" (Guidance 111 on preparing Type Environmental Product Declarations) in accordance with the requirements set out in EN ISO 14025. prEN 17213 "PCR for windows and doors", "PCR Part A" PCR-A-0.1:2018 and "Windows" PCR-FE-2.1:2018. The European standard EN 15804 serves as the core PCR a) Independent verification of the Declaration and statement according to EN ISO 14025:2010 □ internal ⊠ external Independent third party verifier: b) Patrick Wortner <sup>a)</sup> Product category rules <sup>b)</sup> Optional for business-to-business communication Mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

#### **Revisions of this document**

| No. | Date       | Note:                 | Verifier      |         |
|-----|------------|-----------------------|---------------|---------|
|     |            |                       | of the LCA    |         |
| 1   | 18.10.2018 | External Verification | Stich / Zwick | Wortner |
| 2   | 19.06.2019 | Revision              | Zwick         | Wortner |
|     |            |                       |               |         |

#### Product group: Windows

#### Bibliography

- Ökologische Bilanzierung von Baustoffen und Gebäuden – Wege zu einer ganzheitlichen Bilanzierung (LCA of building materials and buildings - Routes to integrated LCA) Published by: Eyerer, P.; Reinhardt, H.-W. Birkhäuser Verlag, Basel, 2000
- Leitfaden Nachhaltiges Bauen (Guidance on Sustainable Building)
   Published by: Bundesministerium für Verkehr, Bau- und Wohnungswesen (German Federal Ministry of Transport, Building and Housing).
   Berlin, 2013
- [3] GaBi ts: Software and database for LCA.
   Published by: IKP Universität Stuttgart and PE Europe GmbH.
   Leinfelden-Echterdingen, 1992 – 2014
- [4] Ökobilanzen (LCA).
   Klöpffer, W.; Grahl, B.
   Wiley-VCH-Verlag, Weinheim, 2009
- [5] EN 15804:2012+A1:2013 Sustainability of construction works -Environmental product declarations - Rules for the product categories. Beuth Verlag GmbH, Berlin
- [6] EN 15942:2011
   Sustainability of construction works Environmental product declaration – Communication format business-to-business Beuth Verlag GmbH, Berlin
- ISO 21930:2007-10
   Sustainability in building construction -Environmental declaration of building products Beuth Verlag GmbH, Berlin
- [8] Leitfaden zur Planung und Ausführung der Montage von Fenstern und Haustüren (Guide on planning and implementing the installation of windows and external pedestrian doorsets).
   Published by: RAL-Gütegemeinschaft Fenster und Haustüren e.V. (Quality Assurance Association Windows and Doors ) Frankfurt, 2014
- [9] EN ISO 14025:2011-10
   Environmental labels and declarations Type III environmental declarations Principles and procedures.
   Beuth Verlag GmbH, Berlin
- [10] EN ISO 16000-9:2006-08 Indoor air - Part 9: Determination of the emission of volatile organic compounds from building products and furnishing - Emission test chamber method Beuth Verlag GmbH, Berlin

Page 16



- EN ISO 16000-11:2006-06
   Indoor air Part 11: Determination of the emission of volatile organic compounds from building products and furnishing - Sampling, storage of samples and preparation of test specimens.
   Beuth Verlag GmbH, Berlin
- DIN ISO 16000-6:2004-12
   Indoor air Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA® sorbent, thermal desorption and gas chromatography using MS/FID.
   Beuth Verlag GmbH, Berlin
- [13] DIN EN ISO 14040:2009-11
   Environmental management Life cycle assessment - Principles and framework.
   Beuth Verlag GmbH, Berlin
- [14] DIN EN ISO 14044:2006-10 Environmental management - Life cycle assessment - Requirements and guidelines Beuth Verlag GmbH, Berlin
- [15] prEN 14351-2:2009-05 Windows and doors - Product standard, performance characteristics - Part 2: Internal pedestrian doorsets without resistance to fire/or smoke leakage characteristics. Beuth Verlag GmbH, Berlin
- [16] prEN 16034:2010-01 Pedestrian doorsets, industrial, commercial, garage doors and windows - Product standard, performance characteristics - Fire resistance and/or smoke control characteristics. Beuth Verlag GmbH, Berlin
- [17] DIN EN 12457-1:2003-01 Characterization of waste - Leaching; Compliance test for leaching of granular waste materials and sludges - Part 1: One stage batch test at a liquid to solid ratio of 2 l/kg and with particle size below 4 mm (without or with size reduction). Beuth Verlag GmbH, Berlin
- [18] DIN EN 12457-2:2003-01 Characterization of waste - Leaching; Compliance test for leaching of leaching of granular waste materials and sludges - Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg and with particle size below 4 mm (without or with size reduction). Beuth Verlag GmbH, Berlin
- [19] DIN EN 12457-3:2003-01 Characterization of waste - Leaching; Compliance test for leaching of granular waste

#### Product group: Windows

- materials and sludges Part 3: Two stage batch test at a liquid to solid ratio of 2 l/kg and 8 l/kg for materials with high solid content with particle size below 4 mm (without or with size reduction). Beuth Verlag GmbH, Berlin
- [20] DIN EN 12457-4:2003-01
   Characterization of waste Leaching;
   Compliance test for leaching of granular waste materials and sludges Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg and with particle size below 10 mm (without or with size reduction).
   Beuth Verlag GmbH, Berlin
- [21] DIN EN 13501-1:2010-01
   Fire classification of construction products and building elements –
   Part 1: Classification using test data from reaction to fire tests
   Beuth Verlag GmbH, Berlin
- [22] DIN EN 14351-01:2010-08 Windows and doors- Product standard, performance characteristics- Part 1: Windows and external pedestrian doors without resistance to fire and/or smoke leakage characteristics. Beuth Verlag GmbH, Berlin
- [23] DIN 4102-1:1998-05
   Fire behaviour of building materials and building components Part 1: Building materials; concepts, requirements and tests.
   Beuth Verlag GmbH, Berlin
- [24] OENORM S 5200:2009-04-01 Radioactivity in building materials. Beuth Verlag GmbH, Berlin
- [25] DIN/CEN TS 14405:2004-09
   Characterization of waste Leaching behaviour tests - Up-flow percolation test (under specified conditions).
   Beuth Verlag GmbH, Berlin
- [26] VDI 2243:2002-07 Recyclingorientierte Produktentwicklung (Recycling oriented product development). Beuth Verlag GmbH, Berlin
- [27] Commission Directive 2009/2/EC amending, for the purpose of its adaptation to technical progress, for the 31st time, Council Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances (15 January 2009).
- [28] ift Guideline NA-01/3 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen (Guidance on preparing Type III Environmental Product

Declarations). ift Rosenheim, November 2015

- [29] Arbeitsschutzgesetz ArbSchG (Safety at Work -Law) Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit (Law on the implementation of occupational health and safety measures to improve the safety and health protection of employees at work), 5 February 2009 (BGBI. I p.160, 270)
- [30] Bundesimmissionsschutzgesetz BImSchG (Federal Immission Law) Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen (Law on harmful environmental impacts by air contamination, noise, vibrations and similar processes), 26 September 2002 (BGBI. I p. 3830)
- [31] Chemikaliengesetz ChemG (Chemicals Act) Gesetz zum Schutz vor gefährlichen Stoffen (Law on protection against hazardous substances Unterteilt sich in Chemikaliengesetzt und eine Reihe von Verordnungen; hier relevant (subdivided into Chemicals Law and a series of regulations; of relevance here: Gesetz zum Schutz vor gefährlichen Stoffen (Law on protection against hazardous substances), 2 July 2008 (BGBI. I p. 1146)
- [32] Chemikalien-Verbotsverordnung ChemVerbotsV (Chemicals Prohibition Regulation)
   Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach dem Chemikaliengesetz (Regulation on bans and restrictions of the placing on the market of hazardous substances, formulations and products covered by the Chemicals Law), 21 July 2008 (BGBI. "Federal Gazette" I p. 1328)
- [33] Gefahrstoffverordnung GefStoffV (Hazardous substances regulation)
   Verordnung zum Schutz vor Gefahrstoffen (Regulation on protection against hazardous substances), 23 December 2004 (BGBI. I p. 3758)
- "PCR Part A: General product category rules for environmental product declarations as per EN ISO 14025 and EN 15804."
   ift Rosenheim, January 2018
- [35] "PCR Windows. Product Category Rules as per ISO 14025 and EN 15804." ift Rosenheim, January 2018





## Product group: Windows

- [36] Research project "EPDs für transparente Bauelemente" (EPDs for transparent building components).
   ift Rosenheim, 2011
- [37] prEN 17213:2018-01
   "Windows and doors" Environmental product declarations - Product category rules for windows and doors Beuth Verlag GmbH, Berlin

Page 18



#### Product group: Windows

Page 19



### 8 Annex 1

## Description of the life cycle scenarios Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel

| Pro                 | duct st   | age         | Co<br>struc<br>sta | ction                     | Use stage End-of-life stage |                                        |            |                        |                             |                        |                       |  | Benefits and<br>loads from<br>beyond the<br>system<br>boundaries |              |                  |              |                                           |
|---------------------|-----------|-------------|--------------------|---------------------------|-----------------------------|----------------------------------------|------------|------------------------|-----------------------------|------------------------|-----------------------|--|------------------------------------------------------------------|--------------|------------------|--------------|-------------------------------------------|
| A1                  | A2        | A3          | A4                 | A5                        | B1                          | B2                                     | <b>B</b> 3 | B4                     | В5                          | B6                     | B7                    |  | C1                                                               | C2           | C3               | C4           | D                                         |
| Raw material supply | Transport | Manufacture | Transport          | Construction/Installation | Use                         | Inspection, maintenance, clean-<br>ing | Repair     | Exchange / Replacement | Improvement / Modernisation | Operational energy use | Operational water use |  | Deconstruction                                                   | Transport    | Waste management | Disposal     | Re-use<br>Recovery<br>Recycling potential |
| ~                   | ✓         | ~           | ~                  | ✓                         | <br>—                       | ✓                                      | ✓          | _                      | —                           | ✓                      | ~                     |  | ~                                                                | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$                              |

Calculation of the scenarios was based on a building service life of 50 years (in accordance with RSL of Section 4 Use stage).

The scenarios were based on information provided by the manufacturer. The scenarios were furthermore based on the research project "EPDs for transparent building components" [36].

<u>Note:</u> The standard scenarios selected are presented in bold type. They were also used for calculating the indicators in the summary table.

✓ Included in the LCA

Not included in the LCA

Page 20



## Product group: Windows

| A4 Tra | A4 Transport to the construction site |                                                                                                             |  |  |  |
|--------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| No.    | Scenario                              | Description                                                                                                 |  |  |  |
| A4.1   | Small series<br>Direct marketing      | 7.5 t truck, 20% capacity used, approx. 50 km to site and empty return trip                                 |  |  |  |
| A4.2   | Small series via local manufacturers  | 7.5 t truck, full capacity used, approx. 50 km and 7.5 t truck, 20% load approx.50 km and empty return trip |  |  |  |
| A4.3   | Small series via distributors         | 40 t truck, full capacity used, 150 km and 7.5 t truck, 20% load approx. 50 km and empty return trip        |  |  |  |
| A4.4   | Large-scale project                   | 40 t truck, full capacity used, approx. 150 km                                                              |  |  |  |

| A4 Transport to the construction site             |                                      |           |           |           |           |
|---------------------------------------------------|--------------------------------------|-----------|-----------|-----------|-----------|
| Environmental impacts per 1 kg                    | Unit                                 | A4.1      | A4.2      | A4.3      | A4.4      |
| Global warming potential                          | kg CO₂ eq.                           | 0.14      | 0.15      | 0.14      | 6.32E-03  |
| Depletion potential of stratospheric ozone layer  | kg R11 eq.                           | 3.77E-15  | 3.98E-15  | 3.94E-15  | 1.73E-16  |
| Acidification potential of soil and water         | kg SO <sub>2</sub> eq.               | 3.36E-04  | 3.54E-04  | 3.44E-04  | 8.28E-06  |
| Eutrophication potential                          | kg PO₄ <sup>3-</sup> eq.             | 8.46E-05  | 8.92E-05  | 8.66E-05  | 2.02E-06  |
| Formation potential of tropospheric ozone         | kg C <sub>2</sub> H <sub>4</sub> eq. | -1.14E-04 | -1.20E-04 | -1.16E-04 | -1.64E-06 |
| Depletion of abiotic resources (ADP elements)     | kg Sb eq.                            | 1.13E-08  | 1.20E-08  | 1.18E-08  | 5.19E-10  |
| Depletion of abiotic resources (ADP fossil fuels) | MJ                                   | 1.88      | 1.98      | 1.96      | 8.60E-02  |
| Use of resources                                  | Unit                                 | A4.1      | A4.2      | A4.3      | A4.4      |
| Renewable primary energy as energy source         | MJ                                   | 0.10      | 0.11      | 0.11      | 4.76E-03  |
| Renewable primary energy for material use         | MJ                                   | 0.00      | 0.00      | 0.00      | 0.00      |
| Total use of renewable primary energy             | MJ                                   | 0.10      | 0.11      | 0.11      | 4.76E-03  |
| Non-renewable primary energy as energy source     | MJ                                   | 1.88      | 1.99      | 1.97      | 8.63E-02  |
| Non-renewable primary energy for material use     | MJ                                   | 0.00      | 0.00      | 0.00      | 0.00      |
| Total use of non-renewable primary energy         | MJ                                   | 1.88      | 1.99      | 1.97      | 8.63E-02  |
| Use of secondary materials                        | kg                                   | 0.00      | 0.00      | 0.00      | 0.00      |
| Renewable secondary fuels                         | MJ                                   | 1.02E-29  | 1.07E-29  | 1.06E-29  | 4.66E-31  |
| Non-renewable secondary fuels                     | MJ                                   | 1.54E-28  | 1.63E-28  | 1.61E-28  | 7.07E-30  |
| Use of fresh water resources                      | m³                                   | 1.92E-04  | 2.02E-04  | 2.00E-04  | 8.77E-06  |
| Waste categories and output material flows        | Unit                                 | A4.1      | A4.2      | A4.3      | A4.4      |
| Disposed hazardous waste                          | kg                                   | 1.09E-07  | 1.15E-07  | 1.14E-07  | 4.99E-09  |
| Disposed non-hazardous waste                      | kg                                   | 1.58E-04  | 1.67E-04  | 1.65E-04  | 7,23E-06  |

Page 21



## Product group: Windows

| Radioactive waste             | kg | 2.58E-06 | 2.72E-06 | 2.70E-06 | 1.18E-07 |
|-------------------------------|----|----------|----------|----------|----------|
| Components for further use    | kg | 0.00     | 0.00     | 0.00     | 0.00     |
| Materials for recycling       | kg | 0.00     | 0.00     | 0.00     | 0.00     |
| Materials for energy recovery | kg | 0.00     | 0.00     | 0.00     | 0.00     |
| Exported electrical energy    | MJ | 0.00     | 0.00     | 0.00     | 0.00     |
| Exported thermal energy       | MJ | 0.00     | 0.00     | 0.00     | 0.00     |

## A5 Construction/Installation

| No.  | Scenario                                 | Description                                                                                                                                                                    |
|------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A5.1 | Manually                                 | The Windows and lift-and-slide units made of<br>steel, stainless steel or weather resistant<br>structural steel are installed without the use of<br>additional lifting devices |
| A5.2 | Small lifting trolley / lifting platform | A small lifting platform/lifting trolley is required for the installation of the units                                                                                         |
| A5.3 | Crane                                    | A crane is required for the installation of the units                                                                                                                          |
|      |                                          | nd lift-and-slide units made of steel, stainless steel or site management and is covered at the building level.                                                                |

## Page 22



## Product group: Windows

| B2 Inspection, maintenance, cleaning |                                         |                                                                                                                                                                                                                                                  |                                                                                                                                                            |              |              |                    |  |
|--------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------------|--|
| B2.1 Cl                              | eaning<br>Scenario                      | Descriptio                                                                                                                                                                                                                                       | n                                                                                                                                                          |              |              |                    |  |
| B2.1.1                               | Rarely manually (facade)                | Manually u                                                                                                                                                                                                                                       | Manually using suitable detergents, annually (2.5 I per 1 m <sup>2</sup> - 125 I / 50 yr)                                                                  |              |              |                    |  |
| B2.1.2                               | Installation using machines             | platform, et                                                                                                                                                                                                                                     | With elevating platforms, crane systems, maintenance platform, etc. – annually, 10 l per 1 m <sup>2</sup> and cleaning (500 l / 50 yr) and 2.5 kWh / 50 yr |              |              |                    |  |
| B2.1.3                               | Frequently manually (windows and doors) | Manually u                                                                                                                                                                                                                                       | using suita                                                                                                                                                | ble deterge  |              |                    |  |
| B2.1.4                               | Frequently, using machines              | months, 2.5 I per 1 m <sup>2</sup> and cleaning ( 500 I / 50 yr)<br>With elevating platforms, crane systems, maintenance<br>platform, etc. – every three months, 10 I per 1 m <sup>2</sup> and<br>cleaning (2,000 I / 50 yr) and 2.5 kWh / 50 yr |                                                                                                                                                            |              |              | m <sup>2</sup> and |  |
| Consum                               | nables and waste materials as well as   | transport di                                                                                                                                                                                                                                     | stances dur                                                                                                                                                | ing cleaning | g are neglig | ible.              |  |
| B2.1 Clear                           | ning                                    |                                                                                                                                                                                                                                                  |                                                                                                                                                            |              |              |                    |  |
| Environm                             | ental impacts                           | Unit                                                                                                                                                                                                                                             | B2.1.1                                                                                                                                                     | B2.1.2       | B2.1.3       | B2.1.4             |  |
| Global war                           | ming potential                          | kg CO₂ eq.                                                                                                                                                                                                                                       | 48.26                                                                                                                                                      | 2.09         | 193.05       | 5.24               |  |
| Depletion p                          | potential of stratospheric ozone layer  | kg R11 eq.                                                                                                                                                                                                                                       | 4.37E-12                                                                                                                                                   | 6.70E-12     | 1.75E-11     | 1.30E-11           |  |
| Acidificatio                         | n potential of soil and water           | kg SO₂ eq.                                                                                                                                                                                                                                       | 5.75E-02                                                                                                                                                   | 5.21E-03     | 0.23         | 1.20E-02           |  |
| Eutrophica                           | tion potential                          | kg PO₄³- eq.                                                                                                                                                                                                                                     | 8.22E-03                                                                                                                                                   | 1.04E-03     | 3.29E-02     | 3.32E-03           |  |
| Formation                            | potential of tropospheric ozone         | kg C <sub>2</sub> H <sub>4</sub> eq.                                                                                                                                                                                                             | 1,33E-02                                                                                                                                                   | 3.42E-04     | 5.33E-02     | 8.13E-04           |  |
| Depletion of                         | of abiotic resources (ADP elements)     | kg Sb eq.                                                                                                                                                                                                                                        | 9.83E-06                                                                                                                                                   | 7.12E-06     | 3.93E-05     | 2.68E-05           |  |
| Depletion of                         | of abiotic resources (ADP fossil fuels) | MJ                                                                                                                                                                                                                                               | 1422.26                                                                                                                                                    | 20.48        | 5689.03      | 48.80              |  |
| Use of res                           | ources                                  | Unit                                                                                                                                                                                                                                             | B2.1.1                                                                                                                                                     | B2.1.2       | B2.1.3       | B2.1.4             |  |
| Renewable                            | e primary energy as energy source       | MJ                                                                                                                                                                                                                                               | 16.97                                                                                                                                                      | 11.18        | 67.87        | 23.36              |  |
| Renewable                            | e primary energy for material use       | MJ                                                                                                                                                                                                                                               | 0.00                                                                                                                                                       | 0.00         | 0.00         | 0.00               |  |
| Total use o                          | of renewable primary energy             | MJ                                                                                                                                                                                                                                               | 16.97                                                                                                                                                      | 11.18        | 67.87        | 23.36              |  |
| Non-renew                            | able primary energy as energy source    | MJ                                                                                                                                                                                                                                               | 0.00                                                                                                                                                       | 0.00         | 0.00         | 0.00               |  |
| Non-renew                            | able primary energy for material use    | MJ                                                                                                                                                                                                                                               | 0.00                                                                                                                                                       | 0.00         | 0.00         | 0.00               |  |
| Total use o                          | of non-renewable primary energy         | MJ                                                                                                                                                                                                                                               | 1432.72                                                                                                                                                    | 32.14        | 5730.89      | 71.70              |  |
| Use of sec                           | ondary materials                        | kg                                                                                                                                                                                                                                               | 0.00                                                                                                                                                       | 0.00         | 0.00         | 0.00               |  |
| Renewable                            | e secondary fuels                       | MJ                                                                                                                                                                                                                                               | 1.35E-21                                                                                                                                                   | 7.27E-22     | 5.40E-21     | 2,91E-21           |  |
| Non-renew                            | vable secondary fuels                   | MJ                                                                                                                                                                                                                                               | 1.59E-20                                                                                                                                                   | 8.54E-21     | 6.35E-20     | 3.42E-20           |  |
| Use of fres                          | h water resources                       | m <sup>3</sup>                                                                                                                                                                                                                                   | 0.28                                                                                                                                                       | 0.52         | 1.14         | 2.04               |  |

Page 23



## Product group: Windows

| Waste categories and output material flows | Unit | B2.1.1   | B2.1.2   | B2.1.3   | B2.1.4   |
|--------------------------------------------|------|----------|----------|----------|----------|
| Disposed hazardous waste                   | kg   | 3.97E-07 | 3.96E-08 | 1.59E-06 | 1.32E-07 |
| Disposed non-hazardous waste               | kg   | 0.20     | 0.11     | 0.81     | 0.41     |
| Radioactive waste                          | kg   | 4.14E-03 | 4.62E-03 | 1.66E-02 | 9.08E-03 |
| Components for further use                 | kg   | 0.00     | 0.00     | 0.00     | 0.00     |
| Materials for recycling                    | kg   | 0.00     | 0.00     | 0.00     | 0.00     |
| Materials for energy recovery              | kg   | 0.00     | 0.00     | 0.00     | 0.00     |
| Exported electrical energy                 | MJ   | 0.00     | 0.00     | 0.00     | 0.00     |
| Exported thermal energy                    | MJ   | 0.00     | 0.00     | 0.00     | 0.00     |

## **B2.2 Maintenance**

| No.    | Scenario   | Description                                                                                                                                                                       |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B2.2.1 | Little use | Functional check every two years, visual inspec-<br>tion, greasing/lubrication of hardware, check for<br>damage and maintenance work if required<br>0.125 kg of grease per 50 yr. |
| B2.2.2 | Normal use | Annual functional check, visual inspection, greas-<br>ing/lubrication and repair if required<br>0.250 kg of grease per 50 yr.                                                     |
| B2.2.3 | Heavy use  | Semi-annual functional check, visual inspection, greasing/lubrication and, if necessary, repair. 0.500 kg of grease per 50 yr.                                                    |

Ancillary materials, energy use and waste materials as well as transport distances during maintenance are negligible.

| B2.2 Maintenance                                  |                          |          |          |          |
|---------------------------------------------------|--------------------------|----------|----------|----------|
| Environmental impacts                             | Unit                     | B2.2.1   | B2.2.2   | B2.2.3   |
| Global warming potential                          | kg CO <sub>2</sub> eq.   | 0.13     | 0.26     | 0.52     |
| Depletion potential of stratospheric ozone layer  | kg R11 eq.               | 4.40E-14 | 8.80E-14 | 1.76E-13 |
| Acidification potential of soil and water         | kg SO₂ eq.               | 4.11E-04 | 8.22E-04 | 1.64E-03 |
| Eutrophication potential                          | kg PO4 <sup>3-</sup> eq. | 3,23E-05 | 6.47E-05 | 1.29E-04 |
| Formation potential of tropospheric ozone         | kg $C_2H_4$ eq.          | 5,91E-05 | 1.18E-04 | 2.36E-04 |
| Depletion of abiotic resources (ADP elements)     | kg Sb eq.                | 1.77E-08 | 3.54E-08 | 7.08E-08 |
| Depletion of abiotic resources (ADP fossil fuels) | MJ                       | 6.39     | 12.79    | 25.58    |
| Use of resources                                  | Unit                     | B2.2.1   | B2.2.2   | B2.2.3   |
| Renewable primary energy as energy source         | MJ                       | 6.99E-02 | 0.14     | 0.28     |
| Renewable primary energy for material use         | MJ                       | 0.00     | 0.00     | 0.00     |
| Total use of renewable primary energy             | MJ                       | 6.99E-02 | 0.14     | 0.28     |

Page 24



#### Product group: Windows

| Non-renewable primary energy as energy source                                                                                               | MJ                         | 6.47                                         | 12.94                                        | 25.88                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Non-renewable primary energy for material use                                                                                               | MJ                         | 0.00                                         | 0.00                                         | 0.00                                         |
| Total use of non-renewable primary energy                                                                                                   | MJ                         | 6.47                                         | 12.94                                        | 25.88                                        |
| Use of secondary materials                                                                                                                  | kg                         | 0.00                                         | 0.00                                         | 0.00                                         |
| Renewable secondary fuels                                                                                                                   | MJ                         | 0.00                                         | 0.00                                         | 0.00                                         |
| Non-renewable secondary fuels                                                                                                               | MJ                         | 0.00                                         | 0.00                                         | 0.00                                         |
| Use of fresh water resources                                                                                                                | m <sup>3</sup>             | 1.19E-04                                     | 2.38E-04                                     | 4.76E-04                                     |
| Waste categories and output material flows                                                                                                  | Unit                       | B2.2.1                                       | B2.2.2                                       | B2.2.3                                       |
| Disposed hazardous waste                                                                                                                    | kg                         | 8.53E-10                                     | 1.71E-09                                     | 3.41E-09                                     |
| Biopood hazardodo waste                                                                                                                     | Ng                         | 0.332-10                                     | 1.712-09                                     | 3.41E-09                                     |
| Disposed non-hazardous waste                                                                                                                | kg                         | 1.40E-04                                     | 2.80E-04                                     | 5.59E-04                                     |
|                                                                                                                                             |                            |                                              |                                              |                                              |
| Disposed non-hazardous waste                                                                                                                | kg                         | 1.40E-04                                     | 2.80E-04                                     | 5.59E-04                                     |
| Disposed non-hazardous waste<br>Radioactive waste                                                                                           | kg<br>kg                   | 1.40E-04<br>3.02E-05                         | 2.80E-04<br>6.03E-05                         | 5.59E-04<br>1.21E-04                         |
| Disposed non-hazardous waste<br>Radioactive waste<br>Components for further use                                                             | kg<br>kg<br>kg             | 1.40E-04<br>3.02E-05<br>0.00                 | 2.80E-04<br>6.03E-05<br>0.00                 | 5.59E-04<br>1.21E-04<br>0.00                 |
| Disposed non-hazardous waste<br>Radioactive waste<br>Components for further use<br>Materials for recycling                                  | kg<br>kg<br>kg<br>kg<br>kg | 1.40E-04<br>3.02E-05<br>0.00<br>0.00         | 2.80E-04<br>6.03E-05<br>0.00<br>0.00         | 5.59E-04<br>1.21E-04<br>0.00<br>0.00         |
| Disposed non-hazardous waste<br>Radioactive waste<br>Components for further use<br>Materials for recycling<br>Materials for energy recovery | kg<br>kg<br>kg<br>kg<br>kg | 1.40E-04<br>3.02E-05<br>0.00<br>0.00<br>0.00 | 2.80E-04<br>6.03E-05<br>0.00<br>0.00<br>0.00 | 5.59E-04<br>1.21E-04<br>0.00<br>0.00<br>0.00 |

#### **B3 Repair**

| No. | Scenario                 | Description                                                                                                                                           |
|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| B3  | Normal use and heavy use | One replacement <sup>*)</sup> : maintenance/repair of hardware,<br>seals/gaskets, glass incl. glazing gasket and other<br>wearing parts, if required. |

\*Assumptions for evaluation of possible environmental impacts; statements made do not constitute any guaranty or warranty of performance.

For updated information refer to the respective instructions for assembly/installation, operation and maintenance of Verband Fenster + Fassade

Since only one scenario is used, the results are shown in the summary table.

| B6 Operational energy use |                                         |                                                                                                                                                    |  |  |  |
|---------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| No.                       | o. Scenario Description                 |                                                                                                                                                    |  |  |  |
| B6.1                      | Manually operated                       | No energy consumed when used                                                                                                                       |  |  |  |
| B6.2                      | Power-operated                          | Windows: per drive mechanism: 0.09 kW (0,0015 kWh); open and close once a day -> 1.35 kWh / 50 yr.                                                 |  |  |  |
| stainless                 | s steel or weather resistant structural | e. The Windows and lift-and-slide units made of steel,<br>steel are opened manually.<br>t during the energy use in buildings. Ancillary materials, |  |  |  |

There is no consumption in terms of transport during the energy use in buildings. Ancillary materials, waste materials and other scenarios are negligible.

Page 25



### Product group: Windows

| B6 Energy demand during use                       |                        |      |           |
|---------------------------------------------------|------------------------|------|-----------|
| Environmental impacts                             | Unit                   | B6.1 | B6.2      |
|                                                   |                        |      | Windows   |
| Global warming potential                          | kg CO <sub>2</sub> eq. | 0.00 | 0.90      |
| Depletion potential of stratospheric ozone layer  | kg R11 eq.             | 0.00 | 1.19E-012 |
| Acidification potential of soil and water         | kg SO <sub>2</sub> eq. | 0.00 | 1.22E-03  |
| Eutrophication potential                          | kg PO₄³- eq.           | 0.00 | 1.98E-04  |
| Formation potential of tropospheric ozone         | kg C₂H₄ eq.            | 0.00 | 8.07E-05  |
| Depletion of abiotic resources (ADP elements)     | kg Sb eq.              | 0.00 | 5.45E-07  |
| Depletion of abiotic resources (ADP fossil fuels) | MJ                     | 0.00 | 7.74      |
| Use of resources                                  | Unit                   | B6.1 | B6.2      |
| Renewable primary energy as energy source         | MJ                     | 0.00 | 4.83      |
| Renewable primary energy for material use         | MJ                     | 0.00 | 0.00      |
| Total use of renewable primary energy             | MJ                     | 0.00 | 4.83      |
| Non-renewable primary energy as energy source     | MJ                     | 0.00 | 10.32     |
| Non-renewable primary energy for material use     | MJ                     | 0.00 | 0.00      |
| Total use of non-renewable primary energy         | MJ                     | 0.00 | 10.32     |
| Use of secondary materials                        | kg                     | 0.00 | 0.00      |
| Renewable secondary fuels                         | MJ                     | 0.00 | 0.00      |
| Non-renewable secondary fuels                     | MJ                     | 0.00 | 2.86E-29  |
| Use of fresh water resources                      | m³                     | 0.00 | 3.07E-03  |
| Waste categories and output material flows        | Unit                   | B6.1 | B6.2      |
| Disposed hazardous waste                          | kg                     | 0.00 | 7.87E-09  |
| Disposed non-hazardous waste                      | kg                     | 0.00 | 1.06E-02  |
| Radioactive waste                                 | kg                     | 0.00 | 1.02E-03  |
| Components for further use                        | kg                     | 0.00 | 0.00      |
| Materials for recycling                           | kg                     | 0.00 | 0.00      |
| Materials for energy recovery                     | kg                     | 0.00 | 0.00      |
| Exported electrical energy                        | MJ                     | 0.00 | 0.00      |
| Exported thermal energy                           | MJ                     | 0.00 | 0.00      |

#### **B7** Operational water use

No water consumption when used as intended. Water consumption for cleaning is specified in Module B2.1.

There is no consumption referring to transport for use of water in buildings. Ancillary materials, consumables, waste materials and other scenarios are negligible.

Page 26



## Product group: Windows

| C1 Deconstruction                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| No.                                                                                                                                                                                                                                                                                                                                    | Scenario                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| C1                                                                                                                                                                                                                                                                                                                                     | Deconstruction                                         | <ul> <li>Based on prEN 17213 (aluminium windows/doors –<br/>Figure B.1).</li> <li>Deconstruction (disposal) 50% glass; deconstruction<br/>(disposal) 5% glass-free materials, remainder recy-<br/>cled.</li> <li>The energy consumed for deconstruction is negligible.</li> <li>Any arising consumption is marginal.</li> <li>Further deconstruction rates are possible, give ade-<br/>quate reason.</li> </ul> |  |  |
| No relevant inputs or outputs apply to the scenario selected. In case of deviating consumption, the removal of the products forms part of the site management and is covered at the building level.                                                                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| C2 Trar                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| No.                                                                                                                                                                                                                                                                                                                                    | Scenario                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| C2                                                                                                                                                                                                                                                                                                                                     | Transport                                              | Transport to collection point using 7.5 t truck, full ca-<br>pacity used 50 km, from collection point to recycling<br>plant using 40 t truck, full capacity used,<br>approx. 150 km                                                                                                                                                                                                                             |  |  |
| C3 Was                                                                                                                                                                                                                                                                                                                                 | nly one scenario is used, the results a ste management |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| No.                                                                                                                                                                                                                                                                                                                                    | Scenario                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| C3                                                                                                                                                                                                                                                                                                                                     | Disposal                                               | Based on prEN 17213 (aluminium windows/doors –<br>Figure B.1).<br>Share for recirculation of materials:<br>100% steel in melt, 100% aluminium in melt, 100%<br>plastics thermal recycling in waste incineration plant,<br>100% glass in melt<br>Recycling efficiency: 90%                                                                                                                                       |  |  |
| Since only one scenario is used, the results are shown in the summary table.                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| The below table presents the disposal processes and their percentage by mass/weight. The calculation is based on the above mentioned shares in percent related to the declared unit of the product system. For calculating the 100% scenarios, the percentage in mass of the material groups can be used, as described in Section 6.2. |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

Page 27



#### Product group: Windows

| C3 Disposal                                               |                   |         |                     |
|-----------------------------------------------------------|-------------------|---------|---------------------|
|                                                           | Unit              | Windows | Lift-and-slide door |
| Collection process, collected separately                  | kg                | 37.19   | 39.56               |
| Collection process, collected as mixed construction waste | kg                | 16.69   | 18.49               |
| Recovery system, for re-use                               | kg                | 0.00    | 0.00                |
| Recovery system, for recycling                            | kg                | 29.71   | 28.32               |
| Recovery system, for energy recovery                      | kg                | 3.77    | 7.29                |
| Disposal                                                  | kg                | 20.41   | 22.44               |
| Assumptions for scenario development, e.g. for transport  | Appropriate units |         |                     |

| C4 Disposal |          |                                                                                                                                                                                   |  |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No.         | Scenario | Description                                                                                                                                                                       |  |
| C4          | Disposal | The non-recordable amounts and losses within the re-<br>use/recycling chain (C1 and C3) are modelled as "dis-<br>posed". The consumption is marginal and cannot be<br>quantified. |  |

The consumption in scenario C4 results from physical pre-treatment, waste recycling and management of the disposal site. The benefits obtained here from the substitution of primary material production are allocated to Module D, e.g. electricity and heat from waste incineration.

Since only one scenario is used, the results are shown in the summary table.

| D Benefits and loads from beyond the system boundaries                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No.                                                                           | Scenario            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| D                                                                             | Recycling potential | Aluminium recyclate from C3.1 excluding the recyclate used in A3<br>replaces 100 % of aluminium compound;<br>Steel scrap from C3.1 excluding the scrap used in A3 replaces<br>100 % of steel;<br>Glass recyclate from C3.1 excluding the glass shards used in A3<br>replace 100 % of glass;<br>Benefits from waste incineration: electricity replaces the German<br>electricity mix, thermal energy replaces thermal energy from natu-<br>ral gas |  |
| The values in Module D result from deconstruction at the end of service life. |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

#### Product group: Windows

Page 28



#### 9 Annex 2

Description of life cycle scenarios per running metre of frame profile for Windows and lift-andslide units made of steel, stainless steel or weather resistant structural steel

| Results per running metre of frame profile for windows and lift-and-slide units |                          | Windows  | Lift-and-slide units |
|---------------------------------------------------------------------------------|--------------------------|----------|----------------------|
| Environmental impacts                                                           | Unit                     | A1-A3    | A1-A3                |
| GWP                                                                             | kg CO2 eq.               | 38.19    | 86.20                |
| ODP                                                                             | kg R11 eq.               | 7.03E-10 | 1.17E-06             |
| AP                                                                              | kg SO <sub>2</sub> eq.   | 0.10     | 0.25                 |
| EP                                                                              | kg PO₄ <sup>3-</sup> eq. | 9.71E-03 | 2.19E-02             |
| POCP                                                                            | kg C₂H₄ eq.              | 1.00E-02 | 2.21E-02             |
| ADPE                                                                            | kg Sb eq.                | 1.01E-04 | 3.31E-03             |
| ADPF                                                                            | MJ                       | 481.11   | 1120.35              |
| Use of resources                                                                | Unit                     | A1-A3    | A1-A3                |
| PERE                                                                            | MJ                       | 86.14    | 218.65               |
| PERM                                                                            | MJ                       | 0.00     | 0.00                 |
| PERT                                                                            | MJ                       | 86.14    | 218.65               |
| PENRE                                                                           | MJ                       | 516.34   | 1270.31              |
| PENRM                                                                           | MJ                       | 34.27    | 37.45                |
| PENRT                                                                           | MJ                       | 550.61   | 1307.76              |
| SM                                                                              | kg                       | 0.00     | 0.00                 |
| RSF                                                                             | MJ                       | 0.00     | 0.00                 |
| NRSF                                                                            | MJ                       | 0.00     | 0.00                 |
| FW                                                                              | m³                       | 0.16     | 0.38                 |
| Waste categories and output material flows                                      | Unit                     | A1-A3    | A1-A3                |
| HWD                                                                             | kg                       | 5.71E-07 | 1.30E-06             |
| NHWD                                                                            | kg                       | 1.57     | 4.50                 |
| RWD                                                                             | kg                       | 2.70E-02 | 7.08E-02             |
| Cru                                                                             | kg                       | 0.00     | 0.00                 |
| MFR                                                                             | kg                       | 0.00     | 0.00                 |
| MER                                                                             | kg                       | 0.00     | 0.00                 |
| EEE                                                                             | MJ                       | 0.34     | 0.67                 |
| EET                                                                             | MJ                       | 0.61     | 1.21                 |

Key:

 GWP – global warming potential
 ODP – ozone depletion potential
 AP - acidification potential of soil and water
 EP - eutrophication potential
 POCP - photochemical ozone creation potential

 ADPE - abiotic depletion potential
 ADPE - abiotic depletion potential – non fossil ressources
 ADPF - abiotic depletion potential – fossil ressources
 PERE - Use of renewable primary energy resources
 PERE - use of renewable primary energy resources
 PERE - use of non-renewable primary energy resources
 PENRT - total use of renewable primary energy resources
 SENT - total use of non-renewable primary energy resources
 SMP = use of non-renewable primary energy resources
 SM = use

#### Product group: Windows

## 10 Annex 3

Description of life cycle scenarios per 1 m<sup>2</sup> of frame profile for Windows and lift-and-slide units made of steel, stainless steel or weather resistant structural steel

| Results per 1 m <sup>2</sup> of face width per frame profile for windows and lift-and-slide units |                                      | Windows<br>Face width 120 mm | Lift-and-slide units<br>Face width 220 mm |
|---------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------|-------------------------------------------|
| Environmental impacts                                                                             | Unit                                 | A1-A3                        | A1-A3                                     |
| GWP                                                                                               | kg CO <sub>2</sub> eq.               | 49.18                        | 45.42                                     |
| ODP                                                                                               | kg R11 eq.                           | 9.05E-10                     | 6.15E-07                                  |
| AP                                                                                                | kg SO <sub>2</sub> eq.               | 0.13                         | 0.13                                      |
| EP                                                                                                | kg PO₄³- eq.                         | 1.25E-02                     | 1.16E-02                                  |
| POCP                                                                                              | kg C <sub>2</sub> H <sub>4</sub> eq. | 1.29E-02                     | 1.16E-02                                  |
| ADPE                                                                                              | kg Sb eq.                            | 1.30E-04                     | 1.74E-03                                  |
| ADPF                                                                                              | MJ                                   | 619.49                       | 590.35                                    |
| Use of resources                                                                                  | Unit                                 | A1-A3                        | A1-A3                                     |
| PERE                                                                                              | MJ                                   | 110.92                       | 115.21                                    |
| PERM                                                                                              | MJ                                   | 0.00                         | 0.00                                      |
| PERT                                                                                              | MJ                                   | 110.92                       | 115.21                                    |
| PENRE                                                                                             | MJ                                   | 664.86                       | 669.37                                    |
| PENRM                                                                                             | MJ                                   | 44.12                        | 19.73                                     |
| PENRT                                                                                             | MJ                                   | 708.98                       | 689.10                                    |
| SM                                                                                                | kg                                   | 0.00                         | 0.00                                      |
| RSF                                                                                               | MJ                                   | 1.90E-09                     | 3.54E-08                                  |
| NRSF                                                                                              | MJ                                   | 2.24E-08                     | 4.48E-07                                  |
| FW                                                                                                | m³                                   | 0.20                         | 0.20                                      |
| Waste categories and output material flows                                                        | Unit                                 | A1-A3                        | A1-A3                                     |
| HWD                                                                                               | kg                                   | 7.35E-07                     | 6.86E-07                                  |
| NHWD                                                                                              | kg                                   | 2.03                         | 2.37                                      |
| RWD                                                                                               | kg                                   | 3.47E-02                     | 3.73E-02                                  |
| Cru                                                                                               | kg                                   | 0.00                         | 0.00                                      |
| MFR                                                                                               | kg                                   | 0.00                         | 0.00                                      |
| MER                                                                                               | kg                                   | 0.00                         | 0.00                                      |
| EEE                                                                                               | MJ                                   | 0.44                         | 0.35                                      |
| EET                                                                                               | MJ                                   | 0.79                         | 0.64                                      |

Key:

 GWP – global warming potential
 ODP – ozone depletion potential
 AP - acidification potential of soil and water
 EP - eutrophication potential
 POCP - photochemical ozone creation potential

 ADPE - abiotic depletion potential
 ADPE - abiotic depletion potential – non fossil ressources
 ADPF - abiotic depletion potential – fossil ressources
 PERE - Use of renewable primary energy

 PERM - use of renewable primary energy
 PERM - use of renewable primary energy resources
 PERT - total use of renewable primary energy resources
 PENRE - use of nonrenewable primary energy resources
 SPENR - use of nonrenewable primary energy resources
 SPEN - use of fresh water
 HWD - Hazardous

 wast

Page 29



#### Imprint

#### Practitioner of the LCA

ift Rosenheim GmbH Theodor Gietl Straße 7-9 D-83026 Rosenheim

#### Programme operator

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Phone: 0 80 31/261-0 Fax: 0 80 31/261 290 Email: info@ift-rosenheim.de www.ift-rosenheim.de

#### With the support of

Verband Fenster + Fassade Walter-Kolb-Straße 1-7 60594 Frankfurt am Main

#### Notes

This EPD is mainly based on the work and findings of the Institut für Fenstertechnik e.V., Rosenheim (ift Rosenheim) and specifically on the ift-Richtlinie NA-01/3 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. (Guideline NA-01/3 - Guidance on preparing Type III Environmental Product Declarations) The publication and all its parts are protected by copyright. Any utilisation outside the confined limits of the copyright provisions is not permitted without the consent of the publishers and is punishable. In particular, this applies to any form of reproduction, translations, storage on microfilm and the storage and processing in electronic systems.

#### Layout

ift Rosenheim GmbH - 2018

#### Photographs (front page) Verband Fenster + Fassade

© ift Rosenheim, 2018



ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Phone: +49 (0) 80 31/261-0 Fax: +49 (0) 80 31/261-290 Email: info@ift-rosenheim.de www.ift-rosenheim.de